ser.rs 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. use std::io::Write;
  2. use std::convert::TryFrom;
  3. use serde::{
  4. ser::{
  5. self,
  6. SerializeSeq,
  7. SerializeTuple,
  8. SerializeTupleStruct,
  9. SerializeTupleVariant,
  10. SerializeMap,
  11. SerializeStruct,
  12. SerializeStructVariant,
  13. },
  14. Serialize,
  15. };
  16. use super::error::{Error, Result, MapError};
  17. type Ok = ();
  18. pub struct Serializer<T: Write> {
  19. output: T,
  20. }
  21. pub fn to_vec<T: Serialize + ?Sized>(value: &T) -> Result<Vec<u8>> {
  22. let mut serializer = Serializer { output: Vec::new()};
  23. value.serialize(&mut serializer)?;
  24. Ok(serializer.output)
  25. }
  26. fn try_convert(len: Option<usize>) -> Result<u32> {
  27. match len {
  28. Some(count) => {
  29. let length = u32::try_from(count).or_else(|_| Err(Error::SequenceTooLong(count)))?;
  30. Ok(length)
  31. },
  32. None => Err(Error::UnknownLength),
  33. }
  34. }
  35. fn convert_variant_index(index: u32) -> Result<u16> {
  36. u16::try_from(index).or_else(|_| Err(Error::TooManyVariants(index)))
  37. }
  38. impl<'a, T: Write> ser::Serializer for &'a mut Serializer<T> {
  39. type Ok = Ok;
  40. type Error = Error;
  41. type SerializeSeq = Self;
  42. type SerializeTuple = Self;
  43. type SerializeTupleVariant = Self;
  44. type SerializeTupleStruct = Self;
  45. type SerializeMap = Self;
  46. type SerializeStruct = Self;
  47. type SerializeStructVariant = Self;
  48. /// A bool is serialized by writing the byte 1 if true and 0 if false.
  49. fn serialize_bool(self, v: bool) -> Result<Self::Ok> {
  50. self.output.write_all(&[if v { 1 } else { 0 }]).map_error()?;
  51. Ok(())
  52. }
  53. /// The output format of a signed byte is two's complement, so we can just output
  54. /// Rust's binary representation.
  55. fn serialize_i8(self, v: i8) -> Result<Self::Ok> {
  56. self.output.write_all(&v.to_le_bytes()).map_error()?;
  57. Ok(())
  58. }
  59. /// The output format of a signed integer is two's complement, so we can just output
  60. /// Rust's binary representation in little endian order.
  61. fn serialize_i16(self, v: i16) -> Result<Self::Ok> {
  62. self.output.write_all(&v.to_le_bytes()).map_error()?;
  63. Ok(())
  64. }
  65. /// The output format of a signed integer is two's complement, so we can just output
  66. /// Rust's binary representation in little endian order.
  67. fn serialize_i32(self, v: i32) -> Result<Self::Ok> {
  68. self.output.write_all(&v.to_le_bytes()).map_error()?;
  69. Ok(())
  70. }
  71. /// The output format of a signed integer is two's complement, so we can just output
  72. /// Rust's binary representation in little endian order.
  73. fn serialize_i64(self, v: i64) -> Result<Self::Ok> {
  74. self.output.write_all(&v.to_le_bytes()).map_error()?;
  75. Ok(())
  76. }
  77. /// The output format of a signed integer is two's complement, so we can just output
  78. /// Rust's binary representation in little endian order.
  79. fn serialize_i128(self, v: i128) -> Result<Self::Ok> {
  80. self.output.write_all(&v.to_le_bytes()).map_error()?;
  81. Ok(())
  82. }
  83. /// The given byte is written directly to the output.
  84. fn serialize_u8(self, v: u8) -> Result<Self::Ok> {
  85. self.output.write_all(&[v]).map_error()?;
  86. Ok(())
  87. }
  88. /// The underlying bytes of the given unsigned integer are written to the output in little
  89. /// endian order.
  90. fn serialize_u16(self, v: u16) -> Result<Self::Ok> {
  91. self.output.write_all(&v.to_le_bytes()).map_error()?;
  92. Ok(())
  93. }
  94. /// The underlying bytes of the given unsigned integer are written to the output in little
  95. /// endian order.
  96. fn serialize_u32(self, v: u32) -> Result<Self::Ok> {
  97. self.output.write_all(&v.to_le_bytes()).map_error()?;
  98. Ok(())
  99. }
  100. /// The underlying bytes of the given unsigned integer are written to the output in little
  101. /// endian order.
  102. fn serialize_u64(self, v: u64) -> Result<Self::Ok> {
  103. self.output.write_all(&v.to_le_bytes()).map_error()?;
  104. Ok(())
  105. }
  106. /// The underlying bytes of the given unsigned integer are written to the output in little
  107. /// endian order.
  108. fn serialize_u128(self, v: u128) -> Result<Self::Ok> {
  109. self.output.write_all(&v.to_le_bytes()).map_error()?;
  110. Ok(())
  111. }
  112. /// Since the output format is IEEE 754, we can just write the underlying bytes to the output
  113. /// in little endian order.
  114. fn serialize_f32(self, v: f32) -> Result<Self::Ok> {
  115. self.output.write_all(&v.to_le_bytes()).map_error()?;
  116. Ok(())
  117. }
  118. /// Since the output format is IEEE 754, we can just write the underlying bytes to the output
  119. /// in little endian order.
  120. fn serialize_f64(self, v: f64) -> Result<Self::Ok> {
  121. self.output.write_all(&v.to_le_bytes()).map_error()?;
  122. Ok(())
  123. }
  124. /// The given char is cast to a u8 then written to the output.
  125. fn serialize_char(self, c: char) -> Result<Self::Ok> {
  126. self.output.write_all(&[c as u8]).map_error()?;
  127. Ok(())
  128. }
  129. /// A slice of bytes is stored by first writing its length (in LE order) and then the slice.
  130. fn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok> {
  131. let len = v.len() as u32;
  132. self.output.write_all(&len.to_le_bytes()).map_error()?;
  133. self.output.write_all(v).map_error()?;
  134. Ok(())
  135. }
  136. /// A str is just serialized as a sequence of UTF8 bytes.
  137. fn serialize_str(self, v: &str) -> Result<Self::Ok> {
  138. self.serialize_bytes(v.as_bytes())
  139. }
  140. /// The none variant is stored as a zero byte.
  141. fn serialize_none(self) -> Result<Self::Ok> {
  142. self.output.write_all(&[0]).map_error()?;
  143. Ok(())
  144. }
  145. /// A some variant is just stored using the representation of its value.
  146. fn serialize_some<U: ?Sized + Serialize>(self, value: &U) -> Result<Self::Ok> {
  147. value.serialize(self)?;
  148. Ok(())
  149. }
  150. /// The unit is a type which can be represented with zero bytes, so we faithfully represent it
  151. /// as nothing.
  152. fn serialize_unit(self) -> Result<()> {
  153. Ok(())
  154. }
  155. /// Forwards to serialize_unit.
  156. fn serialize_unit_struct(self, _name: &'static str) -> Result<Self::Ok> {
  157. self.serialize_unit()
  158. }
  159. /// The index of the unit variant is written to the output.
  160. fn serialize_unit_variant(
  161. self, _name: &'static str, variant_index: u32, _variant: &'static str
  162. ) -> Result<Self::Ok> {
  163. let index = convert_variant_index(variant_index)?;
  164. self.serialize_u16(index)?;
  165. Ok(())
  166. }
  167. /// The value of the newtype struct is serialized and its name is ignored.
  168. fn serialize_newtype_struct<U: ?Sized + Serialize>(
  169. self, _name: &'static str, value: &U
  170. ) -> Result<Self::Ok> {
  171. value.serialize(self)?;
  172. Ok(())
  173. }
  174. /// The index of the variant is serialized and written out, followed by the serialization of
  175. /// its value.
  176. fn serialize_newtype_variant<U: ?Sized + Serialize>(
  177. self, _name: &'static str, variant_index: u32, _variant: &'static str, value: &U
  178. ) -> Result<Self::Ok> {
  179. let index = convert_variant_index(variant_index)?;
  180. self.serialize_u16(index)?;
  181. value.serialize(self)?;
  182. Ok(())
  183. }
  184. fn serialize_seq(self, len: Option<usize>) -> Result<Self::SerializeSeq> {
  185. let length = try_convert(len)?;
  186. self.serialize_u32(length)?;
  187. Ok(self)
  188. }
  189. /// A tuples length is not stored, only its entries.
  190. fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple> {
  191. Ok(self)
  192. }
  193. /// A tuple struct is serialized the same way as a tuple, its name is ignore.
  194. fn serialize_tuple_struct(
  195. self, _name: &'static str, _len: usize
  196. ) -> Result<Self::SerializeTupleStruct> {
  197. Ok(self)
  198. }
  199. /// The variant index is stored before the tuples values.
  200. fn serialize_tuple_variant(
  201. self, _name: &'static str, variant_index: u32, _variant: &'static str, _len: usize
  202. ) -> Result<Self::SerializeTupleStruct> {
  203. let index = convert_variant_index(variant_index)?;
  204. self.serialize_u16(index)?;
  205. Ok(self)
  206. }
  207. /// The number of entries in the map is stored as a u32 prior to serializing the key value
  208. /// pairs in the map. If there are more entries than a u32 can represent, then an error is
  209. /// returned.
  210. fn serialize_map(self, len: Option<usize>) -> Result<Self::SerializeMap> {
  211. let length = try_convert(len)?;
  212. self.serialize_u32(length)?;
  213. Ok(self)
  214. }
  215. /// Since the members of a struct a known at compile time, no additional information is stored.
  216. fn serialize_struct(self, _name: &'static str, _len: usize) -> Result<Self::SerializeStruct> {
  217. Ok(self)
  218. }
  219. /// The variant index is stored before the struct's members.
  220. fn serialize_struct_variant(
  221. self, _name: &'static str, variant_index: u32, _variant: &'static str, _len: usize
  222. ) -> Result<Self::SerializeStructVariant> {
  223. let index = convert_variant_index(variant_index)?;
  224. self.serialize_u16(index)?;
  225. Ok(self)
  226. }
  227. }
  228. impl<'a, T: Write> SerializeSeq for &'a mut Serializer<T> {
  229. type Ok = Ok;
  230. type Error = Error;
  231. fn serialize_element<U: ?Sized + Serialize>(&mut self, value: &U) -> Result<Ok> {
  232. value.serialize(&mut **self)?;
  233. Ok(())
  234. }
  235. /// No marker is added to the end of the sequence because we know its length.
  236. fn end(self) -> Result<Ok> {
  237. Ok(())
  238. }
  239. }
  240. impl<'a, T: Write> SerializeTuple for &'a mut Serializer<T> {
  241. type Ok = Ok;
  242. type Error = Error;
  243. fn serialize_element<U: ?Sized + Serialize>(&mut self, value: &U) -> Result<Ok> {
  244. value.serialize(&mut **self)?;
  245. Ok(())
  246. }
  247. fn end(self) -> Result<Ok> {
  248. Ok(())
  249. }
  250. }
  251. impl<'a, T: Write> SerializeTupleStruct for &'a mut Serializer<T> {
  252. type Ok = Ok;
  253. type Error = Error;
  254. fn serialize_field<U: ?Sized + Serialize>(&mut self, value: &U) -> Result<Ok> {
  255. value.serialize(&mut **self)?;
  256. Ok(())
  257. }
  258. fn end(self) -> Result<Ok> {
  259. Ok(())
  260. }
  261. }
  262. impl<'a, T: Write> SerializeTupleVariant for &'a mut Serializer<T> {
  263. type Ok = Ok;
  264. type Error = Error;
  265. fn serialize_field<U: ?Sized + Serialize>(&mut self, value: &U) -> Result<Ok> {
  266. value.serialize(&mut **self)?;
  267. Ok(())
  268. }
  269. fn end(self) -> Result<Ok> {
  270. Ok(())
  271. }
  272. }
  273. impl<'a, T: Write> SerializeMap for &'a mut Serializer<T> {
  274. type Ok = Ok;
  275. type Error = Error;
  276. fn serialize_key<U: ?Sized + Serialize>(&mut self, key: &U) -> Result<Ok> {
  277. key.serialize(&mut **self)?;
  278. Ok(())
  279. }
  280. fn serialize_value<U: ?Sized + Serialize>(&mut self, value: &U) -> Result<Ok> {
  281. value.serialize(&mut **self)?;
  282. Ok(())
  283. }
  284. fn end(self) -> Result<Ok> {
  285. Ok(())
  286. }
  287. }
  288. impl<'a, T: Write> SerializeStruct for &'a mut Serializer<T> {
  289. type Ok = Ok;
  290. type Error = Error;
  291. fn serialize_field<U: ?Sized + Serialize>(
  292. &mut self, _key: &'static str, value: &U) -> Result<Ok> {
  293. value.serialize(&mut **self)?;
  294. Ok(())
  295. }
  296. fn end(self) -> Result<Ok> {
  297. Ok(())
  298. }
  299. }
  300. impl<'a, T: Write> SerializeStructVariant for &'a mut Serializer<T> {
  301. type Ok = Ok;
  302. type Error = Error;
  303. fn serialize_field<U: ?Sized + Serialize>(
  304. &mut self, _key: &'static str, value: &U) -> Result<Ok> {
  305. value.serialize(&mut **self)?;
  306. Ok(())
  307. }
  308. fn end(self) -> Result<Ok> {
  309. Ok(())
  310. }
  311. }
  312. mod test {
  313. use super::Result;
  314. use super::super::super::{
  315. VersionedBlock,
  316. Block,
  317. ReadCap,
  318. WriteCap,
  319. Certificate,
  320. Hash,
  321. Signature,
  322. EnvelopedKey
  323. };
  324. use serde::Serialize;
  325. use std::collections::HashMap;
  326. #[test]
  327. fn serialize_bool() -> Result<()> {
  328. {
  329. let buffer = super::to_vec(&true)?;
  330. assert_eq!(vec![1], buffer);
  331. }
  332. {
  333. let buffer = super::to_vec(&false)?;
  334. assert_eq!(vec![0], buffer);
  335. }
  336. Ok(())
  337. }
  338. #[test]
  339. fn serialize_i8() -> Result<()> {
  340. {
  341. let buffer = super::to_vec(&5i8)?;
  342. assert_eq!(vec![0b00000101], buffer);
  343. }
  344. {
  345. let value: i8 = -1;
  346. let buffer = super::to_vec(&value)?;
  347. assert_eq!(vec![0b11111111], buffer);
  348. }
  349. Ok(())
  350. }
  351. #[test]
  352. fn serialize_i16() -> Result<()> {
  353. {
  354. let buffer = super::to_vec(&1i16)?;
  355. assert_eq!(vec![0x01, 0x00], buffer);
  356. }
  357. {
  358. let value: i16 = -2;
  359. let buffer = super::to_vec(&value)?;
  360. assert_eq!(vec![0xFE, 0xFF], buffer);
  361. }
  362. Ok(())
  363. }
  364. #[test]
  365. fn serialize_i32() -> Result<()> {
  366. {
  367. let buffer = super::to_vec(&1i32)?;
  368. assert_eq!(vec![0x01, 0x00, 0x00, 0x00], buffer);
  369. }
  370. {
  371. let value: i32 = -2;
  372. let buffer = super::to_vec(&value)?;
  373. assert_eq!(vec![0xFE, 0xFF, 0xFF, 0xFF], buffer);
  374. }
  375. Ok(())
  376. }
  377. #[test]
  378. fn serialize_i64() -> Result<()> {
  379. {
  380. let buffer = super::to_vec(&1i64)?;
  381. assert_eq!(vec![0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], buffer);
  382. }
  383. {
  384. let value: i64 = -2;
  385. let buffer = super::to_vec(&value)?;
  386. assert_eq!(vec![0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], buffer);
  387. }
  388. Ok(())
  389. }
  390. #[test]
  391. fn serialize_i128() -> Result<()> {
  392. {
  393. let buffer = super::to_vec(&1i128)?;
  394. assert_eq!(vec![0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], buffer);
  395. }
  396. {
  397. let value: i128 = -2;
  398. let buffer = super::to_vec(&value)?;
  399. assert_eq!(vec![0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF], buffer);
  400. }
  401. Ok(())
  402. }
  403. #[test]
  404. fn serialize_u8() -> Result<()> {
  405. let value: u8 = 42;
  406. let buffer = super::to_vec(&value)?;
  407. assert_eq!(vec![value], buffer);
  408. Ok(())
  409. }
  410. #[test]
  411. fn serialize_u16() -> Result<()> {
  412. let buffer = super::to_vec(&1u16)?;
  413. assert_eq!(vec![0x01, 0x00], buffer);
  414. Ok(())
  415. }
  416. #[test]
  417. fn serialize_u32() -> Result<()> {
  418. let buffer = super::to_vec(&1u32)?;
  419. assert_eq!(vec![0x01, 0x00, 0x00, 0x00], buffer);
  420. Ok(())
  421. }
  422. #[test]
  423. fn serialize_u64() -> Result<()> {
  424. let buffer = super::to_vec(&1u64)?;
  425. assert_eq!(vec![0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], buffer);
  426. Ok(())
  427. }
  428. #[test]
  429. fn serialize_u128() -> Result<()> {
  430. let buffer = super::to_vec(&1u128)?;
  431. assert_eq!(vec![0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00], buffer);
  432. Ok(())
  433. }
  434. #[test]
  435. fn serialize_f32() -> Result<()> {
  436. let buffer = super::to_vec(&0.15625f32)?;
  437. assert_eq!(vec![0x00, 0x00, 0x20, 0x3E], buffer);
  438. Ok(())
  439. }
  440. #[test]
  441. fn serialize_f64() -> Result<()> {
  442. let buffer = super::to_vec(&1f64)?;
  443. assert_eq!(vec![0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x3F], buffer);
  444. Ok(())
  445. }
  446. #[test]
  447. fn serialize_char() -> Result<()> {
  448. let c: char = '*';
  449. let buffer = super::to_vec(&c)?;
  450. assert_eq!(vec![42], buffer);
  451. Ok(())
  452. }
  453. #[test]
  454. fn serialize_bytes() -> Result<()> {
  455. let mut bytes: Vec<u8> = vec![41, 23, 72, 61];
  456. let buffer = super::to_vec(bytes.as_slice())?;
  457. let length = bytes.len() as u32;
  458. let mut expected = length.to_le_bytes().to_vec();
  459. expected.append(&mut bytes);
  460. assert_eq!(expected, buffer);
  461. Ok(())
  462. }
  463. #[test]
  464. fn serialize_str() -> Result<()> {
  465. let message = "vapid 😑";
  466. let buffer = super::to_vec(message)?;
  467. assert_eq!(vec![10, 0, 0, 0, 118, 97, 112, 105, 100, 32, 240, 159, 152, 145], buffer);
  468. Ok(())
  469. }
  470. #[test]
  471. fn serialize_none() -> Result<()> {
  472. let none: Option<i32> = Option::None;
  473. let buffer = super::to_vec(&none)?;
  474. assert_eq!(vec![0], buffer);
  475. Ok(())
  476. }
  477. #[test]
  478. fn serialize_some() -> Result<()> {
  479. // Sometimes I use decimal, sometimes I use hex. So what, want to fight about it?
  480. let some: Option<i32> = Option::Some(0x02D8);
  481. let buffer = super::to_vec(&some)?;
  482. assert_eq!(vec![0xD8, 0x02, 0x00, 0x00], buffer);
  483. Ok(())
  484. }
  485. #[test]
  486. fn serialize_unit() -> Result<()> {
  487. let buffer = super::to_vec(&())?;
  488. let expected: Vec<u8> = Vec::new();
  489. assert_eq!(expected, buffer);
  490. Ok(())
  491. }
  492. #[test]
  493. fn serialize_unit_struct() -> Result<()> {
  494. #[derive(Serialize)]
  495. struct UnitStruct;
  496. let test = UnitStruct {};
  497. let buffer = super::to_vec(&test)?;
  498. let expected: Vec<u8> = Vec::new();
  499. assert_eq!(expected, buffer);
  500. Ok(())
  501. }
  502. #[test]
  503. fn serialize_unit_variant() -> Result<()> {
  504. #[derive(Serialize)]
  505. enum Matter {
  506. Condensate,
  507. Solid,
  508. Liquid,
  509. Gas,
  510. Plasma,
  511. Cat,
  512. }
  513. let test = Matter::Liquid;
  514. let buffer = super::to_vec(&test)?;
  515. assert_eq!(vec![0x02, 0x00], buffer);
  516. Ok(())
  517. }
  518. #[test]
  519. fn serialize_newtype_struct() -> Result<()> {
  520. #[derive(Serialize)]
  521. struct Score(u16);
  522. let score = Score(512);
  523. let buffer = super::to_vec(&score)?;
  524. assert_eq!(vec![0x00, 0x02], buffer);
  525. Ok(())
  526. }
  527. #[test]
  528. fn serialize_newtype_variant() -> Result<()> {
  529. #[derive(Serialize)]
  530. enum Currency {
  531. Usd(i32),
  532. Btc(i32),
  533. Fil(i32),
  534. Eth(i32)
  535. }
  536. let value = Currency::Fil(1024);
  537. let buffer = super::to_vec(&value)?;
  538. let expected = vec![
  539. 0x02, 0x00, // The variant index.
  540. 0x00, 0x04, 0x00, 0x00 // The value contained within.
  541. ];
  542. assert_eq!(expected, buffer);
  543. Ok(())
  544. }
  545. #[test]
  546. fn serialize_unit_struct_variant() -> Result<()> {
  547. #[derive(Serialize)]
  548. enum UnitStructVariant {
  549. Zeroth {},
  550. First {},
  551. Second {},
  552. Third {}
  553. }
  554. let test = UnitStructVariant::Second {};
  555. let buffer = super::to_vec(&test)?;
  556. assert_eq!(vec![2, 0], buffer);
  557. Ok(())
  558. }
  559. #[test]
  560. fn serialize_tuple() -> Result<()> {
  561. let value = (5u16, -1i8);
  562. let buffer = super::to_vec(&value)?;
  563. assert_eq!(vec![0x05, 0x00 /* == 5u16 */, 0xFF /* == -1i8 */], buffer);
  564. Ok(())
  565. }
  566. #[test]
  567. fn serialize_tuple_struct() -> Result<()> {
  568. #[derive(Serialize)]
  569. struct Contrived(i8, String);
  570. let value = Contrived(-2, "-2".to_string());
  571. let buffer = super::to_vec(&value)?;
  572. let expected = vec![
  573. 0xFE, // The value -2.
  574. 0x02, 0x00, 0x00, 0x00, // The length of the string.
  575. 0x2D, 0x32 // The characters '-' and '2'.
  576. ];
  577. assert_eq!(expected, buffer);
  578. Ok(())
  579. }
  580. #[test]
  581. fn serialize_tuple_variant() -> Result<()> {
  582. #[derive(Serialize)]
  583. enum ByteVector {
  584. Dim2(u8, u8),
  585. Dim3(u8, u8, u8),
  586. }
  587. let value = ByteVector::Dim3(5, 9, 42);
  588. let buffer = super::to_vec(&value)?;
  589. let expected = vec![
  590. 0x01, 0x00, // The variant index.
  591. 0x05, // The first entry.
  592. 0x09, // The second entry.
  593. 0x2A, // The last entry.
  594. ];
  595. assert_eq!(expected, buffer);
  596. Ok(())
  597. }
  598. #[test]
  599. fn serialize_map() -> Result<()> {
  600. #[derive(PartialEq, Eq, Hash, Serialize)]
  601. enum Color { Red, Blue }
  602. let mut map: HashMap<Color, u16> = HashMap::new();
  603. map.insert(Color::Red, 5);
  604. map.insert(Color::Blue, 256);
  605. let buffer = super::to_vec(&map)?;
  606. assert_eq!(12, buffer.len());
  607. assert_eq!(vec![0x02, 0x00, 0x00, 0x00], &buffer[..4]);
  608. // The entries could be output in an arbitrary order.
  609. let mut expected_map: HashMap<[u8; 2], [u8; 2]> = HashMap::new();
  610. expected_map.insert([0x00, 0x00], [0x05, 0x00]);
  611. expected_map.insert([0x01, 0x00], [0x00, 0x01]);
  612. assert_eq!(expected_map.get(&buffer[4..6]).unwrap(), &buffer[6..8]);
  613. assert_eq!(expected_map.get(&buffer[8..10]).unwrap(), &buffer[10..12]);
  614. Ok(())
  615. }
  616. #[test]
  617. fn serialize_struct() -> Result<()> {
  618. #[derive(Serialize)]
  619. struct Bag {
  620. name: &'static str,
  621. weight: u16,
  622. value: i8
  623. }
  624. let value = Bag { name: "box", weight: 10, value: -1 };
  625. let buffer = super::to_vec(&value)?;
  626. let expected = vec![
  627. 0x03, 0x00, 0x00, 0x00, 'b' as u8, 'o' as u8, 'x' as u8, // name
  628. 0x0A, 0x00, // weight
  629. 0xFF // value
  630. ];
  631. assert_eq!(expected, buffer);
  632. Ok(())
  633. }
  634. #[test]
  635. fn serialize_struct_variant() -> Result<()> {
  636. #[derive(Serialize)]
  637. enum Shape {
  638. Rectangle { upper_left_corner: (u16, u16), width: u16, height: u16 },
  639. Circle { center: (u16, u16), radius: u16 },
  640. }
  641. let value = Shape::Circle { center: (0x1D42, 0x9FE0), radius: 0xA100 };
  642. let buffer = super::to_vec(&value)?;
  643. let expected = vec![
  644. 0x01, 0x00, // The variant index.
  645. 0x42, 0x1D, 0xE0, 0x9F, // The center.
  646. 0x00, 0xA1, // The radius.
  647. ];
  648. assert_eq!(expected, buffer);
  649. Ok(())
  650. }
  651. }