generation.rs 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. use std::collections::{HashMap, HashSet};
  2. use crate::parsing::{Message, Transition};
  3. use btrun::{Activate, End};
  4. use super::Protocol;
  5. use proc_macro2::{Ident, TokenStream};
  6. use quote::{format_ident, quote, ToTokens};
  7. impl ToTokens for Protocol {
  8. fn to_tokens(&self, tokens: &mut TokenStream) {
  9. tokens.extend(self.generate_message_enum());
  10. tokens.extend(self.generate_state_traits());
  11. }
  12. }
  13. impl Protocol {
  14. fn generate_message_enum(&self) -> TokenStream {
  15. let mut msgs: HashSet<&Message> = HashSet::new();
  16. for transition in self.transitions.iter() {
  17. // We only need to insert received messages because every sent message has a
  18. // corresponding receiver thanks to the validator.
  19. if let Some(msg) = transition.in_msg() {
  20. msgs.insert(msg);
  21. }
  22. }
  23. let variants = msgs.iter().map(|msg| msg.ident());
  24. let msg_types = msgs.iter().map(|msg| msg.type_tokens());
  25. let enum_name = format_ident!("{}Msgs", self.name_def.name);
  26. quote! {
  27. pub enum #enum_name {
  28. #( #variants(#msg_types) ),*
  29. }
  30. }
  31. }
  32. fn generate_state_traits(&self) -> TokenStream {
  33. let mut traits: HashMap<&Ident, Vec<&Transition>> = HashMap::new();
  34. for transition in self.transitions.iter() {
  35. let vec = traits
  36. .entry(&transition.in_state.state_trait)
  37. .or_insert_with(Vec::new);
  38. vec.push(transition);
  39. }
  40. let mut tokens = TokenStream::new();
  41. for (trait_ident, transitions) in traits {
  42. let transition_tokens = transitions.iter().map(|x| x.generate_tokens());
  43. quote! {
  44. pub trait #trait_ident {
  45. #( #transition_tokens )*
  46. }
  47. }
  48. .to_tokens(&mut tokens);
  49. }
  50. tokens
  51. }
  52. }
  53. impl Message {
  54. /// Returns the tokens which represent the type of this message.
  55. fn type_tokens(&self) -> TokenStream {
  56. // We generate a fully-qualified path to the Activate message so that it doesn't need to be
  57. // imported for every protocol definition.
  58. let msg_type = if self.msg_type == Activate::ident() {
  59. quote! { ::btrun::Activate }
  60. } else {
  61. let msg_type = &self.msg_type;
  62. quote! { #msg_type }
  63. };
  64. if self.is_reply() {
  65. quote! {
  66. <#msg_type as ::btrun::CallMsg>::Reply
  67. }
  68. } else {
  69. quote! {
  70. #msg_type
  71. }
  72. }
  73. }
  74. }
  75. impl Transition {
  76. /// Generates the tokens for the code which implements this transition.
  77. fn generate_tokens(&self) -> TokenStream {
  78. let (msg_arg, method_ident) = if let Some(msg) = self.in_msg() {
  79. let msg_type = if msg.msg_type == Activate::ident() {
  80. quote! { ::btrun::Activate }
  81. } else {
  82. msg.msg_type.to_token_stream()
  83. };
  84. let method_ident = format_ident!("handle_{}", msg.ident().pascal_to_snake());
  85. let msg_arg = quote! { , msg: #msg_type };
  86. (msg_arg, method_ident)
  87. } else {
  88. let msg_arg = quote! {};
  89. let msg_names = self
  90. .out_msgs
  91. .as_ref()
  92. .iter()
  93. .fold(Option::<String>::None, |accum, curr| {
  94. let msg_name = curr.msg.ident().pascal_to_snake();
  95. if let Some(mut accum) = accum {
  96. accum.push('_');
  97. accum.push_str(&msg_name);
  98. Some(accum)
  99. } else {
  100. Some(msg_name)
  101. }
  102. })
  103. // Since no message is being handled, the validator ensures that at least one
  104. // message is being sent. Hence this unwrap will not panic.
  105. .unwrap();
  106. let method_ident = format_ident!("send_{}", msg_names);
  107. (msg_arg, method_ident)
  108. };
  109. let method_type_prefix = method_ident.snake_to_pascal();
  110. let output_pairs: Vec<_> = self
  111. .out_states
  112. .as_ref()
  113. .iter()
  114. .map(|state| {
  115. let state_trait = &state.state_trait;
  116. if state_trait == End::ident() {
  117. (quote! {}, quote! { ::btrun::End })
  118. } else {
  119. let assoc_type = format_ident!("{}{}", method_type_prefix, state_trait);
  120. let output_decl = quote! { type #assoc_type: #state_trait; };
  121. let output_type = quote! { Self::#assoc_type };
  122. (output_decl, output_type)
  123. }
  124. })
  125. .collect();
  126. let output_decls = output_pairs.iter().map(|(decl, _)| decl);
  127. let output_types = output_pairs.iter().map(|(_, output_type)| output_type);
  128. let future_name = format_ident!("{}Fut", method_type_prefix);
  129. quote! {
  130. #( #output_decls )*
  131. type #future_name: ::std::future::Future<Output = Result<( #( #output_types ),* )>>;
  132. fn #method_ident(self #msg_arg) -> Self::#future_name;
  133. }
  134. }
  135. }
  136. trait CaseConvert {
  137. /// Converts a name in snake_case to PascalCase.
  138. fn snake_to_pascal(&self) -> String;
  139. /// Converts a name in PascalCase to snake_case.
  140. fn pascal_to_snake(&self) -> String;
  141. }
  142. impl CaseConvert for String {
  143. fn snake_to_pascal(&self) -> String {
  144. let mut pascal = String::with_capacity(self.len());
  145. let mut prev_underscore = true;
  146. for c in self.chars() {
  147. if '_' == c {
  148. prev_underscore = true;
  149. } else {
  150. if prev_underscore {
  151. pascal.extend(c.to_uppercase());
  152. } else {
  153. pascal.push(c);
  154. }
  155. prev_underscore = false;
  156. }
  157. }
  158. pascal
  159. }
  160. fn pascal_to_snake(&self) -> String {
  161. let mut snake = String::with_capacity(self.len());
  162. let mut prev_lower = false;
  163. for c in self.chars() {
  164. if c.is_uppercase() {
  165. if prev_lower {
  166. snake.push('_');
  167. }
  168. snake.extend(c.to_lowercase());
  169. prev_lower = false;
  170. } else {
  171. prev_lower = true;
  172. snake.push(c);
  173. }
  174. }
  175. snake
  176. }
  177. }
  178. impl CaseConvert for Ident {
  179. fn snake_to_pascal(&self) -> String {
  180. self.to_string().snake_to_pascal()
  181. }
  182. fn pascal_to_snake(&self) -> String {
  183. self.to_string().pascal_to_snake()
  184. }
  185. }
  186. #[cfg(test)]
  187. mod tests {
  188. use super::*;
  189. #[test]
  190. fn string_snake_to_pascal_multiple_segments() {
  191. const EXPECTED: &str = "FirstSecondThird";
  192. let input = String::from("first_second_third");
  193. let actual = input.snake_to_pascal();
  194. assert_eq!(EXPECTED, actual);
  195. }
  196. #[test]
  197. fn string_snake_to_pascal_single_segment() {
  198. const EXPECTED: &str = "First";
  199. let input = String::from("first");
  200. let actual = input.snake_to_pascal();
  201. assert_eq!(EXPECTED, actual);
  202. }
  203. #[test]
  204. fn string_snake_to_pascal_empty_string() {
  205. const EXPECTED: &str = "";
  206. let input = String::from(EXPECTED);
  207. let actual = input.snake_to_pascal();
  208. assert_eq!(EXPECTED, actual);
  209. }
  210. #[test]
  211. fn string_snake_to_pascal_leading_underscore() {
  212. const EXPECTED: &str = "First";
  213. let input = String::from("_first");
  214. let actual = input.snake_to_pascal();
  215. assert_eq!(EXPECTED, actual);
  216. }
  217. #[test]
  218. fn string_snake_to_pascal_leading_underscores() {
  219. const EXPECTED: &str = "First";
  220. let input = String::from("__first");
  221. let actual = input.snake_to_pascal();
  222. assert_eq!(EXPECTED, actual);
  223. }
  224. #[test]
  225. fn string_snake_to_pascal_multiple_underscores() {
  226. const EXPECTED: &str = "FirstSecondThird";
  227. let input = String::from("first__second___third");
  228. let actual = input.snake_to_pascal();
  229. assert_eq!(EXPECTED, actual);
  230. }
  231. #[test]
  232. fn string_pascal_to_snake_multiple_segments() {
  233. const EXPECTED: &str = "first_second_third";
  234. let input = String::from("FirstSecondThird");
  235. let actual = input.pascal_to_snake();
  236. assert_eq!(EXPECTED, actual);
  237. }
  238. #[test]
  239. fn string_pascal_to_snake_single_segment() {
  240. let input = String::from("First");
  241. const EXPECTED: &str = "first";
  242. let actual = input.pascal_to_snake();
  243. assert_eq!(EXPECTED, actual);
  244. }
  245. #[test]
  246. fn string_pascal_to_snake_empty_string() {
  247. const EXPECTED: &str = "";
  248. let input = String::from(EXPECTED);
  249. let actual = input.pascal_to_snake();
  250. assert_eq!(EXPECTED, actual);
  251. }
  252. #[test]
  253. fn string_pascal_to_snake_consecutive_uppercase() {
  254. const EXPECTED: &str = "kernel_mc";
  255. let input = String::from("KernelMC");
  256. let actual = input.pascal_to_snake();
  257. assert_eq!(EXPECTED, actual);
  258. }
  259. }