#![feature(impl_trait_in_assoc_type)] pub mod sector_proto; pub mod fs_proto; use std::{ any::Any, collections::HashMap, fmt::Display, future::{ready, Future, Ready}, marker::PhantomData, net::IpAddr, ops::DerefMut, pin::Pin, sync::Arc, }; use btlib::{bterr, crypto::Creds, error::StringError, BlockPath, Result}; use btserde::{field_helpers::smart_ptr, from_slice, to_vec, write_to}; use bttp::{DeserCallback, MsgCallback, Receiver, Replier, Transmitter}; use serde::{de::DeserializeOwned, Deserialize, Serialize}; use tokio::{ sync::{mpsc, oneshot, Mutex, RwLock}, task::JoinHandle, }; use uuid::Uuid; /// Declares a new [Runtime] which listens for messages at the given IP address and uses the given /// [Creds]. Runtimes are intended to be created once in a process's lifetime and continue running /// until the process exits. #[macro_export] macro_rules! declare_runtime { ($name:ident, $ip_addr:expr, $creds:expr) => { ::lazy_static::lazy_static! { static ref $name: &'static Runtime = { ::lazy_static::lazy_static! { static ref RUNTIME: Runtime = Runtime::_new($creds).unwrap(); static ref RECEIVER: Receiver = _new_receiver($ip_addr, $creds, &*RUNTIME); } // By dereferencing RECEIVER we ensure it is started. let _ = &*RECEIVER; &*RUNTIME }; } }; } /// This function is not intended to be called by downstream crates. #[doc(hidden)] pub fn _new_receiver(ip_addr: IpAddr, creds: Arc, runtime: &'static Runtime) -> Receiver where C: 'static + Send + Sync + Creds, { let callback = RuntimeCallback::new(runtime); Receiver::new(ip_addr, creds, callback).unwrap() } /// An actor runtime. /// /// Actors can be activated by the runtime and execute autonomously until they return. Running /// actors can be sent messages using the `send` method, which does not wait for a response from the /// recipient. If a reply is needed, then `call` can be used, which returns a future that will /// be ready when the reply has been received. pub struct Runtime { path: Arc, handles: RwLock>, peers: RwLock, Transmitter>>, } impl Runtime { /// This method is not intended to be called directly by downstream crates. Use the macro /// [declare_runtime] to create a [Runtime]. /// /// If you create a non-static [Runtime], your process will panic when it is dropped. #[doc(hidden)] pub fn _new(creds: Arc) -> Result { let path = Arc::new(creds.bind_path()?); Ok(Runtime { path, handles: RwLock::new(HashMap::new()), peers: RwLock::new(HashMap::new()), }) } pub fn path(&self) -> &Arc { &self.path } /// Returns the number of actors that are currently executing in this [Runtime]. pub async fn num_running(&self) -> usize { let guard = self.handles.read().await; guard.len() } /// Sends a message to the actor identified by the given [ActorName]. pub async fn send( &self, to: ActorName, from: ActorName, msg: T, ) -> Result<()> { if to.path == self.path { let guard = self.handles.read().await; if let Some(handle) = guard.get(&to.act_id) { handle.send(from, msg).await } else { Err(bterr!("invalid actor name")) } } else { let guard = self.peers.read().await; if let Some(peer) = guard.get(&to.path) { let buf = to_vec(&msg)?; let wire_msg = WireMsg { to, from, payload: &buf, }; peer.send(wire_msg).await } else { // TODO: Use the filesystem to discover the address of the recipient and connect to // it. todo!() } } } /// Sends a message to the actor identified by the given [ActorName] and returns a future which /// is ready when a reply has been received. pub async fn call( &self, to: ActorName, from: ActorName, msg: T, ) -> Result { if to.path == self.path { let guard = self.handles.read().await; if let Some(handle) = guard.get(&to.act_id) { handle.call_through(from, msg).await } else { Err(bterr!("invalid actor name")) } } else { let guard = self.peers.read().await; if let Some(peer) = guard.get(&to.path) { let buf = to_vec(&msg)?; let wire_msg = WireMsg { to, from, payload: &buf, }; peer.call(wire_msg, ReplyCallback::::new()).await? } else { // TODO: Use the filesystem to discover the address of the recipient and connect to // it. todo!() } } } /// Resolves the given [ServiceName] to an [ActorName] which is part of it. pub async fn resolve<'a>(&'a self, _service: &ServiceName) -> Result { todo!() } /// Activates a new actor using the given activator function and returns a handle to it. pub async fn activate(&'static self, activator: F) -> ActorName where Msg: 'static + CallMsg, Fut: 'static + Send + Future, F: FnOnce(&'static Runtime, mpsc::Receiver>, Uuid) -> Fut, { let mut guard = self.handles.write().await; let act_id = { let mut act_id = Uuid::new_v4(); while guard.contains_key(&act_id) { act_id = Uuid::new_v4(); } act_id }; let act_name = self.actor_name(act_id); let (tx, rx) = mpsc::channel::>(MAILBOX_LIMIT); // The deliverer closure is responsible for deserializing messages received over the wire // and delivering them to the actor's mailbox, and sending replies to call messages. let deliverer = { let buffer = Arc::new(Mutex::new(Vec::::new())); let tx = tx.clone(); let act_name = act_name.clone(); move |envelope: WireEnvelope| { let (wire_msg, replier) = envelope.into_parts(); let result = from_slice(wire_msg.payload); let buffer = buffer.clone(); let tx = tx.clone(); let act_name = act_name.clone(); let fut: FutureResult = Box::pin(async move { let msg = result?; if let Some(mut replier) = replier { let (envelope, rx) = Envelope::new_call(act_name, msg); tx.send(envelope).await.map_err(|_| { bterr!("failed to deliver message. Recipient may have halted.") })?; match rx.await { Ok(reply) => { let mut guard = buffer.lock().await; guard.clear(); write_to(&reply, guard.deref_mut())?; let wire_reply = WireReply::Ok(&guard); replier.reply(wire_reply).await } Err(err) => replier.reply_err(err.to_string(), None).await, } } else { tx.send(Envelope::new_send(act_name, msg)) .await .map_err(|_| { bterr!("failed to deliver message. Recipient may have halted.") }) } }); fut } }; let handle = tokio::task::spawn(activator(self, rx, act_id)); let actor_handle = ActorHandle::new(handle, tx, deliverer); guard.insert(act_id, actor_handle); act_name } /// Registers an actor as a service with the given [ServiceId]. pub async fn register( &self, _id: ServiceId, _activator: F, _deserializer: G, ) -> Result<()> where Msg: 'static + CallMsg, Fut: 'static + Send + Future, F: Fn(mpsc::Receiver>, Uuid) -> Fut, G: 'static + Send + Sync + Fn(&[u8]) -> Result, { todo!() } /// Returns the [ActorHandle] for the actor with the given name. /// /// If there is no such actor in this runtime then a [RuntimeError::BadActorName] error is /// returned. /// /// Note that the actor will be aborted when the given handle is dropped (unless it has already /// returned when the handle is dropped), and no further messages will be delivered to it by /// this runtime. pub async fn take(&self, name: &ActorName) -> Result { if name.path == self.path { let mut guard = self.handles.write().await; if let Some(handle) = guard.remove(&name.act_id) { Ok(handle) } else { Err(RuntimeError::BadActorName(name.clone()).into()) } } else { Err(RuntimeError::BadActorName(name.clone()).into()) } } /// Returns the name of the actor in this runtime with the given actor ID. pub fn actor_name(&self, act_id: Uuid) -> ActorName { ActorName::new(self.path.clone(), act_id) } } impl Drop for Runtime { fn drop(&mut self) { panic!("A Runtime was dropped. Panicking to avoid undefined behavior."); } } #[derive(Debug, Clone, PartialEq, Eq)] pub enum RuntimeError { BadActorName(ActorName), } impl Display for RuntimeError { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Self::BadActorName(name) => write!(f, "bad actor name: {name}"), } } } impl std::error::Error for RuntimeError {} #[allow(dead_code)] /// Represents the terminal state of an actor, where it stops processing messages and halts. struct End; #[allow(dead_code)] /// Delivered to an actor implementation when it starts up. pub struct Activate { /// A reference to the `Runtime` which is running this actor. rt: &'static Runtime, /// The ID assigned to this actor. act_id: Uuid, } /// Deserializes replies sent over the wire. struct ReplyCallback { _phantom: PhantomData, } impl ReplyCallback { fn new() -> Self { Self { _phantom: PhantomData, } } } impl DeserCallback for ReplyCallback { type Arg<'de> = WireReply<'de> where T: 'de; type Return = Result; type CallFut<'de> = Ready where T: 'de, T::Reply: 'de; fn call<'de>(&'de mut self, arg: Self::Arg<'de>) -> Self::CallFut<'de> { let result = match arg { WireReply::Ok(slice) => from_slice(slice).map_err(|err| err.into()), WireReply::Err(msg) => Err(StringError::new(msg.to_string()).into()), }; ready(result) } } struct SendReplyCallback { replier: Option, } impl SendReplyCallback { fn new(replier: Replier) -> Self { Self { replier: Some(replier), } } } impl DeserCallback for SendReplyCallback { type Arg<'de> = WireReply<'de>; type Return = Result<()>; type CallFut<'de> = impl 'de + Future; fn call<'de>(&'de mut self, arg: Self::Arg<'de>) -> Self::CallFut<'de> { async move { if let Some(mut replier) = self.replier.take() { replier.reply(arg).await } else { Ok(()) } } } } /// This struct implements the server callback for network messages. #[derive(Clone)] struct RuntimeCallback { rt: &'static Runtime, } impl RuntimeCallback { fn new(rt: &'static Runtime) -> Self { Self { rt } } async fn deliver_local(&self, msg: WireMsg<'_>, replier: Option) -> Result<()> { let guard = self.rt.handles.read().await; if let Some(handle) = guard.get(&msg.to.act_id) { let envelope = if let Some(replier) = replier { WireEnvelope::Call { msg, replier } } else { WireEnvelope::Send { msg } }; (handle.deliverer)(envelope).await } else { Err(bterr!("invalid actor name: {}", msg.to)) } } async fn route_msg(&self, msg: WireMsg<'_>, replier: Option) -> Result<()> { let guard = self.rt.peers.read().await; if let Some(tx) = guard.get(msg.to.path()) { if let Some(replier) = replier { let callback = SendReplyCallback::new(replier); tx.call(msg, callback).await? } else { tx.send(msg).await } } else { Err(bterr!( "unable to deliver message to peer at '{}'", msg.to.path() )) } } } impl MsgCallback for RuntimeCallback { type Arg<'de> = WireMsg<'de>; type CallFut<'de> = impl 'de + Future>; fn call<'de>(&'de self, arg: bttp::MsgReceived>) -> Self::CallFut<'de> { async move { let (_, body, replier) = arg.into_parts(); if body.to.path() == self.rt.path() { self.deliver_local(body, replier).await } else { self.route_msg(body, replier).await } } } } /// A unique identifier for a particular service. #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Serialize, Deserialize)] pub struct ServiceId(#[serde(with = "smart_ptr")] Arc); impl From for ServiceId { fn from(value: String) -> Self { Self(Arc::new(value)) } } impl<'a> From<&'a str> for ServiceId { fn from(value: &'a str) -> Self { Self(Arc::new(value.to_owned())) } } /// A unique identifier for a service. /// /// A service is a collection of actors in the same directory which provide some functionality. #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Serialize, Deserialize)] pub struct ServiceName { /// The path to the directory containing the service. #[serde(with = "smart_ptr")] path: Arc, /// The id of the service. service_id: ServiceId, } /// A unique identifier for a specific actor activation. #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Serialize, Deserialize)] pub struct ActorName { /// The path to the directory containing this actor. #[serde(with = "smart_ptr")] path: Arc, /// A unique identifier for an actor activation. Even as an actor transitions to different types /// as it handles messages, this value does not change. Thus this value can be used to trace an /// actor through a series of state transitions. act_id: Uuid, } impl ActorName { pub fn new(path: Arc, act_id: Uuid) -> Self { Self { path, act_id } } pub fn path(&self) -> &Arc { &self.path } pub fn act_id(&self) -> Uuid { self.act_id } } impl Display for ActorName { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{}@{}", self.act_id, self.path) } } /// Trait for messages which expect exactly one reply. pub trait CallMsg: Serialize + DeserializeOwned + Send + Sync { /// The reply type expected for this message. type Reply: Serialize + DeserializeOwned + Send + Sync; } /// Trait for messages which expect exactly zero replies. pub trait SendMsg: CallMsg {} /// A type used to express when a reply is not expected for a message type. #[derive(Serialize, Deserialize)] enum NoReply {} /// The maximum number of messages which can be kept in an actor's mailbox. const MAILBOX_LIMIT: usize = 32; /// The type of messages sent over the wire between runtimes. #[derive(Serialize, Deserialize)] struct WireMsg<'a> { to: ActorName, from: ActorName, payload: &'a [u8], } impl<'a> bttp::CallMsg<'a> for WireMsg<'a> { type Reply<'r> = WireReply<'r>; } impl<'a> bttp::SendMsg<'a> for WireMsg<'a> {} #[derive(Serialize, Deserialize)] enum WireReply<'a> { Ok(&'a [u8]), Err(&'a str), } /// A wrapper around [WireMsg] which indicates whether a call or send was executed. enum WireEnvelope<'de> { Send { msg: WireMsg<'de> }, Call { msg: WireMsg<'de>, replier: Replier }, } impl<'de> WireEnvelope<'de> { fn into_parts(self) -> (WireMsg<'de>, Option) { match self { Self::Send { msg } => (msg, None), Self::Call { msg, replier } => (msg, Some(replier)), } } } /// Wrapper around a message type `T` which indicates who the message is from and, if the message /// was dispatched with `call`, provides a channel to reply to it. pub struct Envelope { from: ActorName, reply: Option>, msg: T, } impl Envelope { pub fn new(msg: T, reply: Option>, from: ActorName) -> Self { Self { from, reply, msg } } /// Creates a new envelope containing the given message which does not expect a reply. fn new_send(from: ActorName, msg: T) -> Self { Self { from, msg, reply: None, } } /// Creates a new envelope containing the given message which expects exactly one reply. fn new_call(from: ActorName, msg: T) -> (Self, oneshot::Receiver) { let (tx, rx) = oneshot::channel::(); let envelope = Self { from, msg, reply: Some(tx), }; (envelope, rx) } /// Returns the name of the actor which sent this message. pub fn from(&self) -> &ActorName { &self.from } /// Returns a reference to the message in this envelope. pub fn msg(&self) -> &T { &self.msg } /// Sends a reply to this message. /// /// If this message is not expecting a reply, or if this message has already been replied to, /// then an error is returned. pub fn reply(&mut self, reply: T::Reply) -> Result<()> { if let Some(tx) = self.reply.take() { if tx.send(reply).is_ok() { Ok(()) } else { Err(bterr!("failed to send reply")) } } else { Err(bterr!("reply already sent")) } } /// Returns true if this message expects a reply and it has not already been replied to. pub fn needs_reply(&self) -> bool { self.reply.is_some() } pub fn split(self) -> (T, Option>, ActorName) { (self.msg, self.reply, self.from) } } type FutureResult = Pin>>>; pub struct ActorHandle { handle: Option>, sender: Box, deliverer: Box) -> FutureResult>, } impl ActorHandle { fn new(handle: JoinHandle<()>, sender: mpsc::Sender>, deliverer: F) -> Self where T: 'static + CallMsg, F: 'static + Send + Sync + Fn(WireEnvelope<'_>) -> FutureResult, { Self { handle: Some(handle), sender: Box::new(sender), deliverer: Box::new(deliverer), } } fn sender(&self) -> Result<&mpsc::Sender>> { self.sender .downcast_ref::>>() .ok_or_else(|| bterr!("unexpected message type")) } /// Sends a message to the actor represented by this handle. pub async fn send(&self, from: ActorName, msg: T) -> Result<()> { let sender = self.sender()?; sender .send(Envelope::new_send(from, msg)) .await .map_err(|_| bterr!("failed to enqueue message"))?; Ok(()) } pub async fn call_through( &self, from: ActorName, msg: T, ) -> Result { let sender = self.sender()?; let (envelope, rx) = Envelope::new_call(from, msg); sender .send(envelope) .await .map_err(|_| bterr!("failed to enqueue call"))?; let reply = rx.await?; Ok(reply) } pub async fn returned(&mut self) -> Result<()> { if let Some(handle) = self.handle.take() { handle.await?; } Ok(()) } pub fn abort(&mut self) { if let Some(handle) = self.handle.take() { handle.abort(); } } } impl Drop for ActorHandle { fn drop(&mut self) { self.abort(); } } #[cfg(test)] mod tests { use super::*; use btlib::{ crypto::{ConcreteCreds, CredStore, CredsPriv}, log::BuilderExt, }; use btlib_tests::TEST_STORE; use btproto::protocol; use btserde::to_vec; use bttp::BlockAddr; use ctor::ctor; use lazy_static::lazy_static; use std::{ net::{IpAddr, Ipv4Addr}, sync::atomic::{AtomicU8, Ordering}, time::{Duration, Instant}, }; use tokio::runtime::Builder; const RUNTIME_ADDR: IpAddr = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)); lazy_static! { static ref RUNTIME_CREDS: Arc = TEST_STORE.node_creds().unwrap(); } declare_runtime!(RUNTIME, RUNTIME_ADDR, RUNTIME_CREDS.clone()); lazy_static! { /// A tokio async runtime. /// /// When the `#[tokio::test]` attribute is used on a test, a new current thread runtime /// is created for each test /// (source: https://docs.rs/tokio/latest/tokio/attr.test.html#current-thread-runtime). /// This creates a problem, because the first test thread to access the `RUNTIME` static /// will initialize its `Receiver` in its runtime, which will stop running at the end of /// the test. Hence subsequent tests will not be able to send remote messages to this /// `Runtime`. /// /// By creating a single async runtime which is used by all of the tests, we can avoid this /// problem. static ref ASYNC_RT: tokio::runtime::Runtime = Builder::new_current_thread() .enable_all() .build() .unwrap(); } /// The log level to use when running tests. const LOG_LEVEL: &str = "warn"; #[ctor] fn ctor() { std::env::set_var("RUST_LOG", format!("{},quinn=WARN", LOG_LEVEL)); env_logger::Builder::from_default_env().btformat().init(); } #[derive(Serialize, Deserialize)] struct EchoMsg(String); impl CallMsg for EchoMsg { type Reply = EchoMsg; } async fn echo( _rt: &'static Runtime, mut mailbox: mpsc::Receiver>, _act_id: Uuid, ) { while let Some(envelope) = mailbox.recv().await { let (msg, replier, ..) = envelope.split(); if let Some(replier) = replier { if let Err(_) = replier.send(msg) { panic!("failed to send reply"); } } } } #[test] fn local_call() { ASYNC_RT.block_on(async { const EXPECTED: &str = "hello"; let name = RUNTIME.activate(echo).await; let from = ActorName::new(name.path().clone(), Uuid::default()); let reply = RUNTIME .call(name.clone(), from, EchoMsg(EXPECTED.into())) .await .unwrap(); assert_eq!(EXPECTED, reply.0); RUNTIME.take(&name).await.unwrap(); }) } #[test] fn remote_call() { ASYNC_RT.block_on(async { const EXPECTED: &str = "hello"; let actor_name = RUNTIME.activate(echo).await; let bind_path = Arc::new(RUNTIME_CREDS.bind_path().unwrap()); let block_addr = Arc::new(BlockAddr::new(RUNTIME_ADDR, bind_path)); let transmitter = Transmitter::new(block_addr, RUNTIME_CREDS.clone()) .await .unwrap(); let buf = to_vec(&EchoMsg(EXPECTED.to_string())).unwrap(); let wire_msg = WireMsg { to: actor_name.clone(), from: RUNTIME.actor_name(Uuid::default()), payload: &buf, }; let reply = transmitter .call(wire_msg, ReplyCallback::::new()) .await .unwrap() .unwrap(); assert_eq!(EXPECTED, reply.0); RUNTIME.take(&actor_name).await.unwrap(); }); } /// Tests the `num_running` method. /// /// This test uses its own runtime and so can use the `#[tokio::test]` attribute. #[tokio::test] async fn num_running() { declare_runtime!( LOCAL_RT, // This needs to be different from the address where `RUNTIME` is listening. IpAddr::from([127, 0, 0, 2]), TEST_STORE.node_creds().unwrap() ); assert_eq!(0, LOCAL_RT.num_running().await); let name = LOCAL_RT.activate(echo).await; assert_eq!(1, LOCAL_RT.num_running().await); LOCAL_RT.take(&name).await.unwrap(); assert_eq!(0, LOCAL_RT.num_running().await); } // The following code is a proof-of-concept for what types should be generated for a // simple ping-pong protocol: // protocol! { let name = PingPongProtocol; let states = [ ClientInit, SentPing, ServerInit, Listening, ]; ClientInit?Activate -> SentPing, Listening!Ping; ServerInit?Activate -> Listening; Listening?Ping -> End, SentPing!Ping::Reply; SentPing?Ping::Reply -> End; } // // In words, the protocol is described as follows. // 1. The ClientInit state receives the Activate message. It returns the SentPing state and a // Ping message to be sent to the Listening state. // 2. The ServerInit state receives the Activate message. It returns the Listening state. // 3. When the Listening state receives the Ping message it returns the End state and a // Ping::Reply message to be sent to the SentPing state. // 4. When the SentPing state receives the Ping::Reply message it returns the End state. // // The End state represents an end to the session described by the protocol. When an actor // transitions to the End state its function returns. // The generated actor implementation is the sender of the Activate message. // When a state is expecting a Reply message, an error occurs if the message is not received // in a timely manner. #[derive(Serialize, Deserialize)] struct Ping; impl CallMsg for Ping { type Reply = PingReply; } // I was tempted to name this "Pong", but the proc macro wouldn't think to do that. #[derive(Serialize, Deserialize)] struct PingReply; trait ClientInit { type AfterActivate: SentPing; type HandleActivateFut: Future>; fn handle_activate(self, msg: Activate) -> Self::HandleActivateFut; } trait ServerInit { type AfterActivate: Listening; type HandleActivateFut: Future>; fn handle_activate(self, msg: Activate) -> Self::HandleActivateFut; } trait Listening { type HandlePingFut: Future>; fn handle_ping(self, msg: Ping) -> Self::HandlePingFut; } trait SentPing { type HandleReplyFut: Future>; fn handle_reply(self, msg: PingReply) -> Self::HandleReplyFut; } #[derive(Serialize, Deserialize)] enum PingProtocolMsg { Ping(Ping), PingReply(PingReply), } impl CallMsg for PingProtocolMsg { type Reply = PingProtocolMsg; } impl SendMsg for PingProtocolMsg {} struct ClientInitState; impl ClientInit for ClientInitState { type AfterActivate = ClientState; type HandleActivateFut = impl Future>; fn handle_activate(self, _msg: Activate) -> Self::HandleActivateFut { ready(Ok((ClientState, Ping))) } } struct ClientState; impl SentPing for ClientState { type HandleReplyFut = Ready>; fn handle_reply(self, _msg: PingReply) -> Self::HandleReplyFut { ready(Ok(End)) } } #[allow(dead_code)] enum PingClientState { Init(ClientInitState), SentPing(ClientState), End(End), } struct ServerInitState; struct ServerState; impl ServerInit for ServerInitState { type AfterActivate = ServerState; type HandleActivateFut = Ready>; fn handle_activate(self, _msg: Activate) -> Self::HandleActivateFut { ready(Ok(ServerState)) } } impl Listening for ServerState { type HandlePingFut = impl Future>; fn handle_ping(self, _msg: Ping) -> Self::HandlePingFut { ready(Ok((End, PingReply))) } } #[allow(dead_code)] enum PingServerState { ServerInit(ServerInitState), Listening(ServerState), End(End), } async fn ping_server( counter: Arc, rt: &'static Runtime, mut mailbox: mpsc::Receiver>, act_id: Uuid, ) { let mut state = { let init = ServerInitState; let state = init.handle_activate(Activate { rt, act_id }).await.unwrap(); PingServerState::Listening(state) }; while let Some(envelope) = mailbox.recv().await { let (msg, replier, _from) = envelope.split(); match (state, msg) { (PingServerState::Listening(listening_state), PingProtocolMsg::Ping(msg)) => { let (new_state, reply) = listening_state.handle_ping(msg).await.unwrap(); state = PingServerState::End(new_state); if let Err(_) = replier.unwrap().send(PingProtocolMsg::PingReply(reply)) { panic!("Failed to send Ping reply."); } } (_prev_state, _) => { panic!("Ping protocol violation."); // A real implementation should assign the previous state and log the error. // state = prev_state; } } if let PingServerState::End(_) = state { break; } } counter.fetch_sub(1, Ordering::SeqCst); } async fn ping_client( counter: Arc, server_name: ActorName, rt: &'static Runtime, _mailbox: mpsc::Receiver>, act_id: Uuid, ) { let init = ClientInitState; let (state, msg) = init.handle_activate(Activate { rt, act_id }).await.unwrap(); let from = rt.actor_name(act_id); let reply = rt .call(server_name, from, PingProtocolMsg::Ping(msg)) .await .unwrap(); if let PingProtocolMsg::PingReply(msg) = reply { state.handle_reply(msg).await.unwrap(); } else { panic!("Incorrect message type sent in reply to Ping."); } counter.fetch_sub(1, Ordering::SeqCst); } #[test] fn ping_pong_test() { ASYNC_RT.block_on(async { let counter = Arc::new(AtomicU8::new(2)); let server_name = { let counter = counter.clone(); RUNTIME .activate(move |rt, mailbox, act_id| ping_server(counter, rt, mailbox, act_id)) .await }; let client_name = { let server_name = server_name.clone(); let counter = counter.clone(); RUNTIME .activate(move |rt, mailbox, act_id| { ping_client(counter, server_name, rt, mailbox, act_id) }) .await }; let deadline = Instant::now() + Duration::from_millis(500); while counter.load(Ordering::SeqCst) > 0 && Instant::now() < deadline { tokio::time::sleep(Duration::from_millis(20)).await; } // Check that both tasks finished successfully and we didn't just timeout. assert_eq!(0, counter.load(Ordering::SeqCst)); // TODO: Should actor which return be removed from the runtime automatically? RUNTIME.take(&server_name).await.unwrap(); RUNTIME.take(&client_name).await.unwrap(); }); } // Here's another protocol example. This is the Customer and Travel Agency protocol used as an // example in the survey paper "Behavioral Types in Programming Languages." // Note that the Choosing state can send messages at any time, not just in response to another // message because there is a transition from Choosing that doesn't use the receive operator // (`?`). protocol! { let name = TravelAgency; let states = [ AgencyInit, Listening, Choosing, ]; AgencyInit?Activate -> Listening; Choosing -> Choosing, Listening!Query|Accept|Reject; Listening?Query -> Listening, Choosing!Query::Reply; Choosing?Query::Reply -> Choosing; Listening?Accept -> End, Choosing!Accept::Reply; Choosing?Accept::Reply -> End; Listening?Reject -> End, Choosing!Reject:Reply; Choosing?Reject::Reply -> End; } }